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A stochastic activity-transfer model, previously proposed to apply to turbulence, 
is studied and simulated on a 256 x 256 lattice. Introduction of random self- 
activation does not allow stable fronts to develop in the limit of small growth 
probability. By assigning discrete density values equal to the threshold values 
in a related continuous and deterministic model, the structure functions for 
distances r in the lattice are calculated. They have a functional form different 
from the power behavior which in the case of the deterministic version was 
interpreted as another sign of self-organized criticality. Future studies of these 
and other models may be facilitated by the algorithm developed for structure 
function calculations. 
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1. I N T R O D U C T I O N  

An analogy between hydrodynamic  turbulence and  a "forest-fire" model on 
a lattice has been proposed. (1"2) The basic analogy would be that energy is 

injected statistically homogenous ly  and is dissipated on a fractal. A central 
assumpt ion  in the model  is that  self-organized criticality (3)'2 occurs in the 

limit of small tree growth probabi l i ty  (energy injection rate) p, a trait  

which would come abou t  since the forest-fire model, like the original 

sandpile model,  includes an element of metastabili ty.  Recently it has 
been claimed, (5'6) however, that the s imulat ions of the forest-fire model  do 

not  show self-organized criticality: Instead, it was interpreted as being 
percolation-like,  which should also be the behavior  in the very limit p ~ 0 
if criticality appears there. 

1 Rogaland University Center, Stavanger, Norway. 
2 See, e.g., ref. 4 for a recent review of the literature on self-organized criticality. 
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Also a modified two-dimensional model has recently been proposed to 
explain some generic properties of turbulence. (v) This model is deter- 
ministic, with a uniform tree density growth rate p, and occurrence of 
"trees" and also self-ignition as the density grows past thresholds (in addi- 
tion to nearest-neighbour ignition). In this sense the model is continuous. 
An analogy with experimental results (and with the fl model predictions) 
for turbulence (8) is indeed found(V): The structure functions of the "tree" 
density n(x) 

Sq(r) = (In(xo + x) - n(xo)[ q ) (1) 

with r -  1 < Ix] ~< r (r integer), were demonstrated by simulation to follow 
the scaling law 

Sq ~ r ((q), ((q) ~ 0.027q (2) 

for 2 ~ q ~  14, for small (but finite) p on a 400 x 400 lattice. The ( . )  
brackets in Eq. (1) denote an ensemble average. Furthermore, the model 
was shown to have zero Lyapunov coefficients and a power-law divergence 
of nearby trajectories ("weak chaos"). These scaling properties have been 
taken as another indication of self-organized criticality. 

Concerning the criticality, there is thus disputed evidence in the 
discrete model, while the reported results in the continuous model are 
positive. Also, in ref. 7 an ergodicity assumption was used in the evaluation 
of the average in Eq. (1): Only one point for x o was used per time step (9) 
instead of an average over x o (apparently for computational reasons), with 
the need for a subsequent average over a large number of time steps (up 
to 40,000). A similar procedure was used for the calculation of number 
distributions in ref. 2, with limited accuracy as a result. 

The present paper reports on work addressing the following topics, 
related to the above-mentioned problems: 

1. Whether the scaling results for the structure functions of the 
continuous model carry over to the original (discrete) model. 

2. Whether random self-ignition with probability p can be introduced 
in the discrete model. 

3. Technically, whether it is feasible in practice to integrate over both 
space points in the average in (1). 

A preliminary account of the results has been reported elsewhere. (1~ 
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2. S I M U L A T I O N S  

2.1. The Model  

We study the discrete model on a two-dimensional square lattice with 
periodic boundary conditions. To avoid a pyrotechnical terminology when 
the model is applied to turbulent states in general, we will call the sites 
"empty," "filled," or "active." In this model we will assign density values 
equal to the threshold values in the continuous model, so that an ampty 
site, a filled site, and an active site have the density values 0, 1, and 2, 
respectively. The lattice model rules are as follows: 

1. An empty site becomes filled with probability p per time step. 

2. Active sites become empty after one time step. 

3. A filled site nearest-neighbor to an active site becomes active in 
the next time step. 

4. Optionally, a filled site with no active neighbors can spontaneously 
become active with probability p per time step (self-activation). 

The optional specification of random self-activation would on the average 
make a filled site self-activate after p-1 time steps if a statistically station- 
ary state occurs, like what would be the self-ignition time delay in the 
deterministic continuous model. 

For the time-step advancement in the model, and also for the number 
density calculations, we use lists (m of sites activated or emptied in the 
previous time step. This speeds up the actual calculations considerably. 
For the calculations of the number density of active sites it allows for an 
average over all active sites taken as starting points, taking advantage of 
the periodic boundary conditions (limited, of course, to distances up to half 
the lattice size to avoid double-counting3). 

For one time step (say, the kth) in the ensemble average, the structure 
functions are most simply computed by a double sum where the indices i 
and j both run over all lattice sites: 

S(qk'(r) = E 2 P(r ]x~, xj)[ n}k)--l'l(k)lq (3) 
i j 

The operator P(r lxi ,  xj) projects out pairs of sites with one site on a 
"shell" around the other, taken here as r -  �89 (fx t -  xjl ~< r + �89 (r integer). 
Periodic boundary conditions are used to find the shortest value of the dif- 
ference between a given pair of vector components. The projection operator 

3 In ref. 7, s t ruc ture  funct ions have  been p lo t ted  up  to r values of 275-280, with N =  400. 

822/68/5-6-6 
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is understood to include weights according to the number of points in a 
shell, as well as the factor due to the average over center points. 

In the evaluation of the sums in Eq. (3), the CPU time requirement 
grows as N 2J, with d the dimensionality of the lattice and N the edge 
length. Performing such a feat for increasing N time step after time step 
would quickly become impractical also on supercomputers, even with 
obvious simplifications such as replacing square root calculations by table 
lookup and taking advantage of the symmetry of the sum. 

2.2. A Fast A lgor i thm for the Structure  Functions 

For even q values, there is a way around the problem with the evalua- 
tion of the double sum in Eq. (3). It is applicable to all cases where a small 
fraction of the sites change their density value per time step. Introduce a 
matrix A I k) which keeps track of the changes in ni since the previous time 
step: 

nlk) = nl k ' ) + / i l k )  (4) 

Then 
SCqk)(r) = S~ k 1)(r) + T(qk)(r) (5) 

T~qk)(r) = Z Z P(r Ix,, xj){ [nl k ' ) -  n~ k- ' )+  AI k) 
i j 

_/i~k)[q_lnlk-1) (k l) q --  nj I } (6 )  

1 K K - - 1  
E S~qk)(r)=S~ql)(r)+--~ --- T~q2)(r) 

k = l  

K - 2  1 
+ ~ T~q3)(r) + ... + ~. T~qm(r) (7) 

The time average implied by the ensemble average will thus be fast if each 
T~qk)(r) can be computed efficiently. Observe that the summand in Eq. (6) 
is symmetric in the permutation of the indices i and j, and separate the 
index values into two groups {~} and {/~}: 

(8) 

ie {fl},e~ Afk)#O (9) 

The possible i, j combinations in the sum in Eq. (6) are (because of the 
symmetry) 

{~, ~} 2{cq B} {fl,/~} (10) 
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whereas if the i sum were restricted to include only i t  {fl} one would get 

{c~,/~} {/~,/~} (11) 

Since the summand in Eq. (6) is proportional to AIk)-A~ k) for even q 
values, contributions in the group {c~, ~} will all be zero since there all 
AI k) =0.  The double sum in Eq. (6) can thus be evaluated as follows: 

1. Keep a list of the sites which have changed density since the 
previous time step. 

2. Restrict either the i or the j sum to run only over values in the list, 
and add those contributions with weight 2. 

3. Subtract afterward contributions with both sums restricted to run 
only over indices in the list, given weight 1. 

If the {fl} indices are a fraction f of the N J index values, this algorithm 
speeds up the evaluation of s~k)(r) by a factor of order f - l  for all time 
steps except the first one. (It is impractical to keep a list also of the {c~} 
sites, therefore the subtraction to avoid double-counting.) 

2.3. I m p l e m e n t a t i o n  and General  Results 

A 256 x 256 lattice was used. Step-by-step output of the lattice state 
was displayed on a PC-AT computer. Number distributions of active sites 
were computed on a MicroVAX, while structure functions were computed 
on a CRAY X-MP. Transportable generators (12) for 32-bit computers and 
NAG Library generators (13) were used to obtain random numbers, on the 
CRAY (a 64-bit computer) only the latter ones. Runs were started with a 
random initial distribution of empty, filled, and active sites, determined 
by assigning density values continuously and randomly between 0 and 
2 / ( 1 - p ' )  and then truncating the values down to the nearest integer 
(corresponding to a fraction p'  of the sites being active). The possibility 
p 'r  was included. Optionally, runs could also be started with an 
inhomogeneous distribution intended to facilitate the formation of an 
extended front of active sites. 

By visual observation, it was concluded that random self-activation 
with probability p cannot be used in the discrete model, if the aim is to get 
sustained fronts for small (but finite) p values. The random creation of 
active sites with subsequent nearest-neighbor activation will exhaust the 
density of filled sites, such that a density sufficient to allow for the 
formation of stable fronts will never build up. For  the rest of this paper we 
will keep to the case with no self-activation. 

Sustained and roughly straight (but fuzzy) fronts moving across the 
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lattice for 25,000 time steps or more without the emergence of a state with 
no active sites were obtained for p values down to p ~ 0.003 with random 
initial conditions, and down to p ~ 0 . 0 0 2 5  with inhomogeneous initial 
conditions. Inhomogeneous initial conditions thus seem less essential than 
reported, (5) except of course that they may make a front develop in fewer 
time steps. Such fronts, once they were established, appeared to be quite 
stable configurations despite the tendency for formation of "plumes." This 
eliminated the need for sporadic random reactivation reported for smaller 
lattice sizes. (2) Cases of deactivation also appearing, for other seed values 
tried in the random number generator with the above-mentioned limiting 
p values, generally happened during the early time steps before a front had 
developed. For decreasing p there was a quite abrupt change to a situation 
where no seed values among those tried would result in a sustained front. 

In the structure function calculations the algorithm described pre- 
viously was used. The CPU time requirement for the calculation of S~l)(r) 
on the CRAY was of the order of 30 min (without vectorization). For the 
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any  act ive site. The  curves  are for p = 0.0035 and  p = 0.003. Averages  over  5000 t ime steps are 
shown.  Curves  are drawn as straight l ines be tween  points  for each  integer r, therefore the 
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lowest p values, the number of sites changing density per time step was 
such that a factor of order 100 was gained by the calculation of each 
T~z~)(r) (k > 1) compared to a calculation of S~k)(r). 

2.4. Results for Number  Distr ibut ions of Act ive Sites 

Figure 1 shows cumulative number distributions of active sites as a 
function of distance r from any active site, with p = 0.003 and p = 0.0035, 
for the case with no self-activation. The curves are averages over 5000 time 
steps, following an initial relaxation over 20,000 time steps. The closeness 
to unity of the fractal dimension ( D = 0 . 9 8 7 _ 0 . 0 0 3  by least squares) 
follows trivially (5) from the straightness of the front. The "lacunarity" of the 
front makes D slightly smaller than 1. For  a comparison, in Fig. 2 the 
curve for the very last time step (p =0.0035) is shown. The double sum 
(over a shell as well as average over center points) clearly leads to an 
improvement compared to the single-time-step results. 

Particularly during the early time steps, before a stable front is estab- 
lished, there may be steps with very few active sites. With, for instance, 
10,000 relaxation steps instead of 20,000, the curves therefore showed a 

i000 . . . . . . . .  , . . . . . . . .  , . . . . . . .  
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Fig. 2. Comparison of C(r) for one time step (the 25,000th), and C(r) averaged over 5000 

steps (from 20,000 to 25,000), The curves are for p = 0.0035. 
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dependence on the seed and also on the generator chosen: Some runs led 
to curves with a smaller total number of active sites, but with nearly the 
same fractal dimension as shown above. That  would be the effect of a 
large number of steps during which a straight front is being established, 
following a near deactivation. 

2.5, Results for Structure  Functions 

Structure functions with q = 2, 4, 6, and 8 for p = 0.003 are shown in 
Fig. 3, for the case with no self-activation. They are calculated by averaging 
over 100 time steps, following an initial relaxation over 24,900 steps. The 
much larger number  of steps used for the continuous modeP 7) is only 
superficially more reliable, since there a large number was necessary 
because of the reliance on ergodicity (only one point per step was used as 
center point). The stability of the situation where a straight front moves 
across the lattice contributes also to the reliability of a calculation with a 
moderate number of steps included in the average. As a further check, 
Fig. 4 shows a comparison of the averaged q = 2 and q = 4 curves for 
p = 0.0035 with the curves from the 25,000th time step only. 
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Fig. 3. Structure functions S2(r), S4(r), S6(r), and Ss(r ) for p=0.003.  Averages over 100 
time steps are shown. Curves are drawn as straight lines between points for each integer r. 
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Fig. 4. Comparison of S2(r ) and S4(r ) for one time step (the 25,000th), and S2(r) and S4(r) 
averaged over 100 steps (from 24,900 to 25,000). The curves are for p =0.0035. 

The curves do not show scaling. For  large r (~> 10), there may seem 
to be limited straight-line portions (though not with the slope dependence 
on q of the continuous model), but runs for p = 0.007 merely resulted in a 
more distinct curvature at the large-r and. Other checks excluded scaling in 
cases where a stable front had not yet developed, or with a straight front 
on the verge of disappearing because a too small p value had been chosen. 

For  a > b, one has S,(r)> Sb(r), while the continuous case had it the 
other way around. The reason is that here, a nonzero [An] is 1 or larger, 
while for the continuous case this difference could be smaller than unity. 

3. DISCUSSION 

The qualitative properties of the fronts and their fractal dimensions 
found here are consistent with earlier results on larger latticesJ s) The algo- 
rithm developed here has made possible a reliable evaluation of the struc- 
ture functions. The same algorithm can be applied to the continuous case 
of ref. 7: Uniform growth at a pair of sites will not change their contribu- 
tion to the structure function, so only the small number of sites activated 



758 Finjord 

or deactivated per time step are of interest, allowing for a calculation for 
steps after the first one quite analogous to the one presented here. 

For a front to develop after a random initialization, a number of time 
steps of the order o f p  -1 or larger is needed. Inclusion of the possibility for 
some random reactivation in the model, when (and only if) a state without 
active sites should occur (2) (which is a real problem for small lattice sizes), 
may therefore not be statistically insignificant. Activity-transfer models with 
and without reactivation, implemented on small lattices, may have 
significantly different dynamical properties. 

Seed values for the limiting p values presented have been taken from 
the subset leading to 25,000 time steps or more without the emergence of 
total deactivation, for the generator and lattice size used. The necessity of 
imposing such a restriction is a shortcoming of the finite lattice approach. 
Since cases of total deactivation generally appeared prior to the emergence 
of an established front, it is assumed that the effect of the restriction 
amounts to the exclusion of transient effects. 

It is not clear what role self-activation really played for the reported ~7) 
continuous model results. If the fronts were mainly straight, the combina- 
tion of lattice size and growth rate would seem to just make possible one 
front passage across the lattice without any sites being self-activated before 
the next arrival. If not, self-activation in the continuous model could lead 
to inherently different dynamics, and an expectation of similar scaling 
behavior would be unsubstantiated. 

In the continuous case, the average density n behind a front will 
evidently increase roughly linearly with the distance y from the front, while 
in the discrete case, the average density behaves (5) like 1 -  e -py. This may 
explain the difference in scaling behavior. 

The observation of some curvature at the large-r end of the structure 
function curves, becoming more distinct in runs with a larger p value, may 
indicate the presence of a saturation effect. Such indications of saturation 
over a distance of the order of the distance between fronts were also 
observed in the continuous case. (7) These effects are to be expected, since 
In(x)l ~<2, unlike the case of fluid turbulence, where there is no such 
bound. The power law in Eq. (3) will have a limited range of validity for 
a finite lattice, with the distance between fronts indicating the saturation 
distance. 

Possibly, by an analogy with Ising-model criticality, the large-r 
behavior in an SOC-type limit should exhibit a power-law decay of the 
correlation function, 

Sq(r) ~ C- -  aq(r) (12) 

Gq(r) ~ r-"(q) ( 13 ) 
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with, e.g., 

G2(r) =- ( [n(x o + x) - (n(x  0 + x) ) ] [n(Xo) - (n (xo) )  ] ) 

and C a constant. However, the asymptotic limit is not well-defined, and 
may not show self-organized criticality. 15'6) The finite p (and N) value of 
this work excludes an indication of the functional form of Sq(r) for 
asymptotically large lattices, where SOC behavior was originally (~'2) 
assumed to occur. (The restriction rma x = N/2 seems merely to exclude 
a region where at least the case without self-ignition would show an 
unavoidable noncritical saturation.) However, an eventual power-law 
scaling of Sq(r) for small r in the asymptotic limit would not be analogous 
to that observed in the continuous model, where a linear dependence of 
on q was found (7) for a considerable range in p, with the scaling form in 
Eq. (2) being visible down to r values of order 2 or 3. 

4. C O N C L U S I O N  

The discrete model, the basis for speculations about the role of self- 
organized criticality in some aspects of turbulence, does not have the scaling 
properties of the structure functions found in other models of turbulence. 
This lack of scaling may be related to the behavior of the average density 
as a function of distance from the front. It renders the continuous model 
better suited to explain certain aspects of turbulence. There are arguments, 
though, that no model with bounded variables should have the critical 
Sq(r) increasing algebraically with r. It also supports the claim that the 
discrete model does not show self-organized criticality. 

Introduction of random self-activation results in a different behavior, 
without sustained fronts for small p. It is argued that opportunistic random 
reactivation can also result in statistically significant changes of the 
dynamics. 

The algorithm developed in the present paper may facilitate future 
studies of the properties of these and similar models, in particular con- 
cerning their validity when applied to aspects of turbulence. It may also be 
more generally applicable for correlation calculations when only a small 
fraction of the sites in a matrix change their value per time step. 
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